

Project ID # VAN028

Electric Vehicle – Grid Benefits Analysis

PI: Anand R. Gopal

Team: Colin Sheppard, Julia Szinai, Nikit Abhyankar

Lawrence Berkeley National Laboratory 2018 DOE VTO Annual Merit Review June 21, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Start date: October 2017

End date: September 2019

• Percent complete: 30%

 First time project is reviewed separately

Budget

Total project funding: \$500K

DOE share: 100%

FY 2016: Zero

FY 2017: \$97K

Barriers

- Consumer reluctance to purchase new technologies
- Grid impacts of electric vehicles are highly uncertain
- Relating component-level technologies to national-level benefits

Partners

Project Lead: LBNL

Partners: ANL, UC Davis

Objectives

- Estimate the costs and benefits of integrating millions of plug-in electric vehicles into the power system
 - Impact on the grid operating cost
 - Impact on power system generators including the curtailment of intermittent renewable energy
- By accounting for charging behavior and constrained infrastructure using the BEAM model
- The grid is simulated as it is dispatched, using the PLEXOS model, which minimizes cost in serving load reliably

Milestones

California results are complete and national analysis on schedule

Date	Milestone	Status	
December 2017	Discussion with VTO on progress in California- based vehicle-grid integration analysis and proposed approach for translation to national-level	Completed	
March 2018	Presentation on California results and completed methodology in translating vehicle-grid integration analysis to national estimations	Completed	
June 2018	Preliminary national results	On schedule	
September 2018	Report/submitted journal article on PEV benefits and costs from grid integration at national level	On schedule	

Key Results

- Overnight time-of-use (TOU) rate responsive charging and smart charging lower grid operating costs by up to 42% and 51% relative to unmanaged charging
- Savings per vehicle range from \$60 to \$150 per year
- Smart charging lowers curtailment by up to 50% while TOU actually increases curtailment
- Both smart charging and overnight TOU can defer investment costs in generation as PEV volumes increase

Method: Linked Mobility and Grid Models

Approach

Vehicle and Mobility Data:

- Road network
- Mobility (traveler activity chains)
- 2016 Vehicle Registrations
- Vehicle energy consumption and charging characteristics
- Charging infrastructure

2. Charging Load,

2014 LTPP database from CAISO: - Generator Data

- Renewable Portfolio Standard
- Non-EV Loads
- Fuel and CO₂ Prices
- Import/Export Limits
- Reserves

Grid and PEV Scenarios:

Base case: No PEVs Under 4 adoption levels (0.95M, 2.1M, 2.5M, 5M)

- Unmanaged PEVs

chargers (sensitivity

- Smart charging PEVs
- Time-of-use rate PEVs Added workplace

analysis)

Grid **Outcomes:**

- System Operating Cost
- Renewable Curtailment

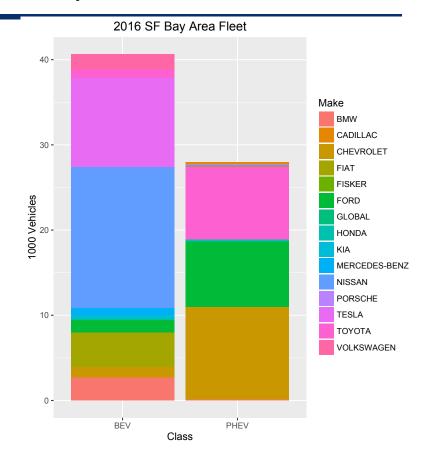
1. BEAM Model: PEV Mobility/

Charging

Individual Vehicle Charging

Sessions

Scaling and **Flexibility**

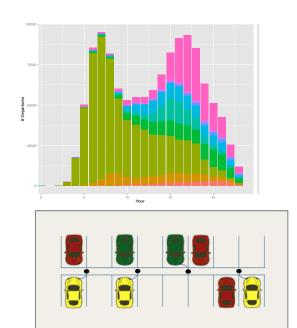

Aggregate

2025 CA Charging Loads and Constraints

3. PLEXOS: Power Sector Model

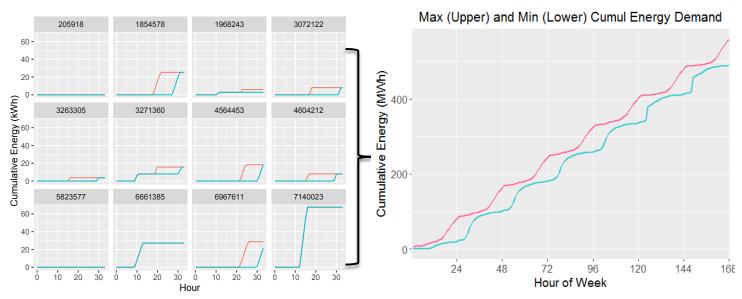
BEAM Inputs for SF Bay Area

- 2016 vehicle make & model by zip code (source: Polk IHS data)
- All PEV battery capacities increased by 50% to reflect 2025 scenario
- 60% BEVs, 40% PHEVs
- Charging infrastructure by charger type and location
- Annual eVMT by PEV type


BEV and PHEV annual eVMT

Vehicle Type	eVMT	
BEVs	11,000	
PHEVs	7,600	

BEAM: PEV Trips and Charging Behavior


- Activity chains from MPO travel demand model
- Range-aware heuristic used to assign BEVs/PHEVs to population
- Congestion data from UCB analysis
- Unimodal runs, only PEVs are simulated
- Charging behavior is a nested logit model that is calibrated with observed ChargePoint data

Charging Strategies Modeled

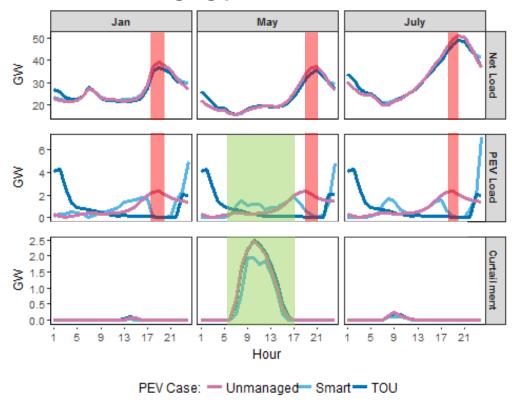
- BEAM first simulates unmanaged and TOU charging ->
 produces fixed load profiles for Bay Area drivers
- □ BEAM generates smart charging constraints for individual drivers → Vertical summation to aggregate upper and lower limits
 - Same energy delivered as unmanaged charging session

Individual Session Constraints

Aggregated Constraints

Aggregated PEV Charging for CA in 2025

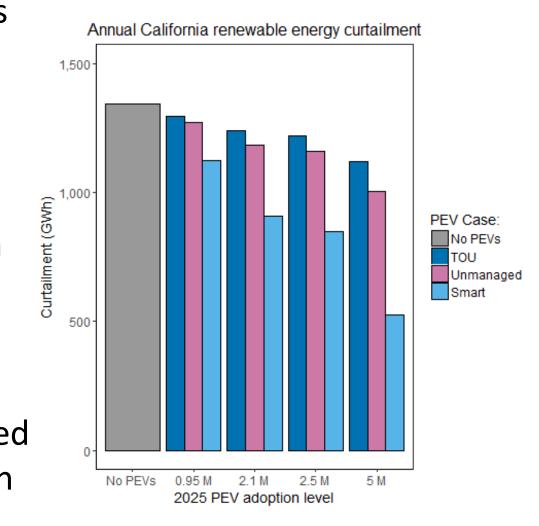
- Aggregated loads and constraints represent charging flexibility potential for 2016 SF Bay Area
- For each charging strategy:
 - We scale these separately for BEVs (60%) and PHEVs (40%) to reach statewide CEC forecast of 2025 PEV penetration for each CA utility

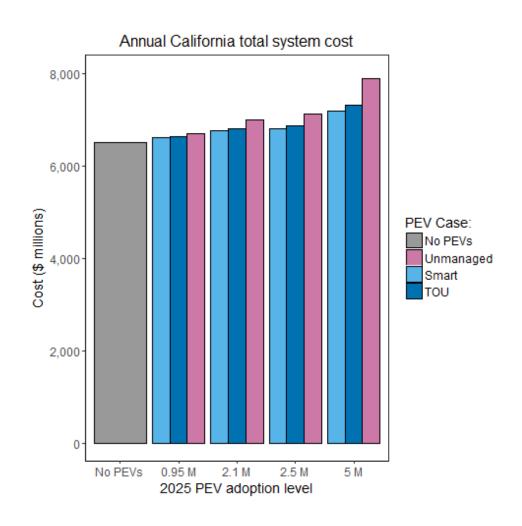

Scenarios of 2025 California PEV adoption simulated under each charging strategy

	Low	Mid	High	"Reach"
Total PEV Charging Load (GWh)	3,016	6,668	7,938	15,876
Total Stock of PEVs	950,000	2,100,000	2,500,000	5,000,000
PEVs % of Current CA Auto Stock	4%	8%	10%	20%

Results: PEV Charging Load

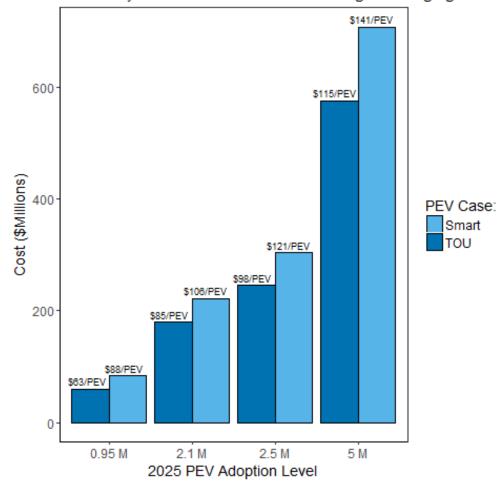
- Unmanaged charging coincides with peak load and ramp on grid (red); smart and TOU charging alleviates peak
- Smart charging increases during times of renewable curtailment (green), especially in spring


CA Load, charging patterns and RE curtailment

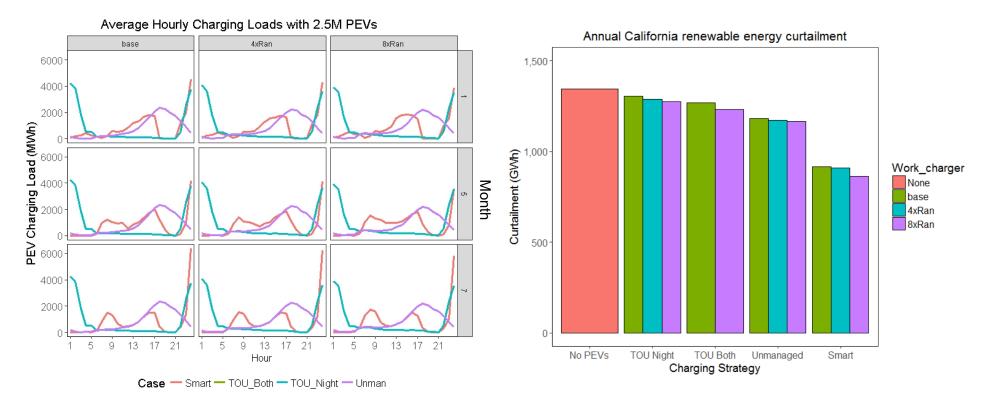

RE curtailment reduced by smart charging

- Curtailment: Generators turned down from full capacity usually due to over-supply
- Renewable curtailment reduced up to 48% with 5M smart charging vehicles
- Curtailment minimally reduced with unmanaged charging, worsened with time-of-use

Managed charging saves grid operating costs


- Most of cost savings from smart charging can be achieved with overnight TOU charging
- Smart and TOU charging can defer expensive capacity expansion, while unmanaged charging exacerbates peak

Managed charging saves grid operating costs


- With 2.5M PEVs,
 ~\$300M of annual grid operating cost savings when PEVs participate in smart charging vs. left unmanaged
- But annual average per vehicle savings is low with both smart and TOU charging

Avoided Total System Cost Relative to Unmanaged Charging

Increased workplace charging infrastructure

 Follow-up study to analyze grid impact of adding 4x and 8x more workplace charging infrastructure, and daytime TOU charging

Response to FY17 Reviewer Comments

This is the first time this project is being reviewed independently. The work under this project was reviewed as part of the overall Benefits Analysis led by ANL

Collaborations

- The results of this work at the national level will feed into the VTO Program Benefits Analysis project led by ANL
- Working with UC Davis to scale up grid modeling to national scale

Remaining Challenges and Barriers

- Scaling up California result to national-level requires a simplified representation of charging behavior and infrastructure constraints
- We have developed a reduced form model for the mobility side
- National grid dispatch modeling using PLEXOS is computationally very intensive
- We are working with UC Davis, who have developed a reduced form national grid dispatch model

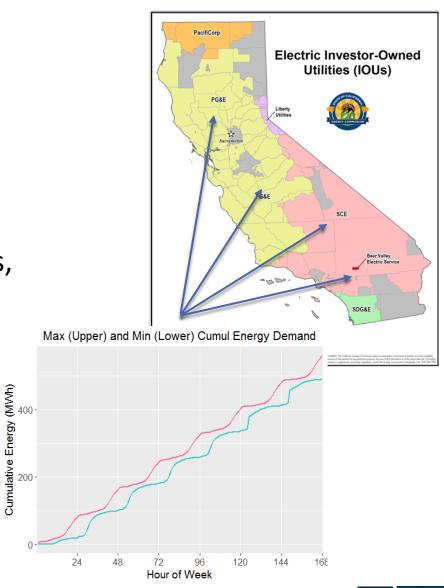
Proposed Future Work

- If future mobility relies heavily on automated ridehailing fleets, how will PEV charging demand load change?
- What will be the economic impact on the grid?
- Can AV-ridehailing fleets accelerate the integration of renewable energy on the grid

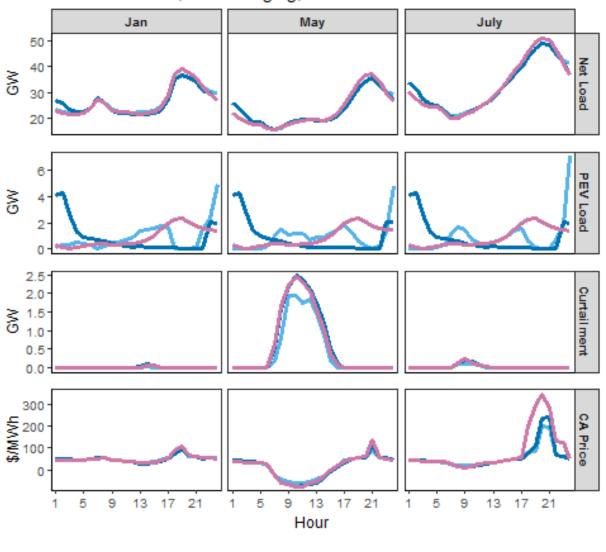
Any proposed future work is subject to change based on funding levels

Summary

- California analysis shows that PEVs can be very beneficial in increasing the utilization of renewable energy at higher penetrations
- Smart charging can lower operating costs for the grid but the benefits at a per vehicle level are not substantial
- We are implementing the methodology to estimate the national level grid impacts of privately owned PEVs at high levels of penetration
- We are collaborating with both ANL and UC Davis



TECHNICAL BACKUP SLIDES


Aggregated PEV Loads and Constraints Added to Grid Model

- Western US grid modeled with PLEXOS optimization model
- 50% Renewable Energy modeled for CA grid
 - Non-PEV loads, generator costs, transmission constraints, and other grid data from CAISO database used for statewide grid planning
- Aggregated PEV loads to PLEXOS for each CA utility

Detailed Charging and Grid Metrics

California net load, PEV charging, and RE curtailment with 2.5 M PEVs

